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I. INTROBUCTION- AND. SUMMARY .. =
Ceevilion
This final report summarizes work performed on the Adaptive Decentralized

Control project (under contract F4920-81-C-0051) during the period June 1981 -
July 1984. The objective of this research effort was the development of a new
concept for the design of decentralized controllers for large scale systems.

The modeling, analysis and control of large-scale systems is an
increasingly important problem in such diverse areas as defense systems,
communication and computer networks and transportation systems. The size and
complexity of many systems make it difficult or impractical to use centralized
control structures. Furthermore, considerations of communication costs,
system reliability, computational requirements and response time provide
strong incentives for the use of distributed control architectures. The basic
focus of our research is on a framework within which decentralized controller
structures can be analyzed and developed. The motivation for our proposed
approach which we named ADCON (for Adaptive Decentralized Eg!;rol) comes from
the following observations about the current status of control theory.

An important aspect of centralized control has been the study of systems
with unknown or uncertain (time varying, random) parameters. The
investigation of this problem led to an extensive literature on adaptive
control (also called: Tlearning or self-organizing systems). The natural
progression in developing centralized controllers was from the non-adaptive
case to the more difficult problems addressed by adaptive techniques.

The study of decentralized control seems so far to be almost exclusively
devoted to non-adaptive techniques. A possible explanation of this state of
affairs is the fact that the area of decentralized control of completely known
systems still has many unresolved issues and some basic problems are yet to be
answered. Under these conditions, there seemed to be 1ittle incentive to
tackle the more complex adaptive case which deals with partially known
systems. However, this 1ine of thinking is based on the experience gained in
centralized control and it may be inapplicable in the context of the
decentralized problem, which has radically different characteristics. In
fact, adaptive techniques have a central role in decentralized control, which
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is of a somewhat different nature than the role they play in the centralized
problem.

To understand the interrelation between adaptive and decentralized
control, we have to re-examine the basic issues underlying the need for
decentralized control strategies. The main motivation for considering such
strategies arises in the context of complex, large-scale systems where a
centralized controller usually requires excessive computational requirements
and excessive information gathering networks to make such a controller
feasible. In such a system, it is reasonable to assume that the local
controller (i.e., the controller of one subsystem in the large system) has
only partial information about the rest of the system. Even if the structure
of the whole system (i.e., the state equations of all subsystems and their
interactions) can be made available to each local controller, the sheer
complexity of the problem often limits the usefulness of this information. In
fact, attempting to use too much information may be one of the principal
stumbling blocks of conventional approaches to decentralized control. Most of
these approaches try to solve the (optimal) centralized problem, and then to
find clever ways of decentralizing the solution. The shortcomings of this
technique and the need for a different point of view are by now widely
recognized.

The basic idea underlying our approach is to assume that from the
subsystem's point of view, the rest of the system is not exactly known. Thus,
the subsystem is aware of its own structure, but it has only an approximate
knowledge of the rest of the system, for example, in the form of a reduced
- order model. (Different subsystems will use different models of the “outside
g world".) The local controller {s then designed on the basis of this partial
. information. The modeling uncertainty inherent in this procedure makes it
necessary to consider robust or adaptive control structures. Note that the
uncertainty here i{s due to the complexity of the system rather than to lack of
knowledge or to random effects, which are the traditional sources of
uncertainty in centralized control. The idea of replacing a complex
deterministic problem by a simple stochastic model is by no means new, and has .-
been used in a variety of physical problems (e.g., statistical
thermodynamics).
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The use of reduced order models and partial information greatly
simplifies the design and implementation of the decentralized controllers. It
raises, however, many difficult questions regarding the conditions under which
such a scheme will lead to satisfactory system behavior. What is needed is a
theory for the control of interconnected subsystems in the presence of model
uncertainties. In an earlier report [12] and in some related papers we made a
preliminary study of some of these issues.

An even more difficult set of questions arises with regard to the
operation of adaptive controllers in the presence of uncertainty. Currently
available adaptive control algorithms have been shown to experience severe
difficulties in the presence of unmodeled plant dynamics. We were able to
derive conditions which guarantee that the adaptive controller will have
specified performance despite plant uncertainty and unmodeled dynamics. These
conditions provide guidelines for the analysis and design of robust adaptive
controllers. A combination of results from robust control and adaptive
control theory was used to prove the main theorem. The main theorem was
applied to a number of well-known adaptive structures: the direct adaptive
controller, an adaptive observer, the indirect adaptive controller, and a
general form of the model reference adaptive controller [4]. We believe that
this work represents a significant advance in the field of adaptive control.

In [13] we presented an input-output approach for analyzing the global
stability and robustness properties of adaptive controllers to unmodeled
dynamics. The concept of a tuned system was introduced, i.e., the control
system that could be obtained 1f the plant were known. Comparing the adaptive
system with the tuned system results in the development of a generic adaptive
error system. Passivity theory was used to derive conditions which guarantee
global stability of the error system associated with the adaptive controller,
and ensure boundedness of the adaptive gains. Specific bounds are presented
for certain significant signals in the control systems. Limitations of these
global results are discussed, particularly the requirement that a certain
operator be strictly positive real (SPR) -- a condition that is unlikely to
hold due to unmodeled dynamics.

The ADCON concept involves many different issues, as can be seen from the
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earlier discussion and from [4],[9],[12],(13]. So far we have addressed the
problem of designing a controller for a single subsystem, when the rest of the
system is fixed. This represents only one step in an iterative procedure in
which each subsystem performs its own controller design. We have done some
investigation extensions of the theory of robust control and adaptive control
to the case of interconnected subsystems, in which local controllers are
designed sequentially (iteratively) or simultaneously. A number of different
information structures were considered. It seems that by providing each
subsystem with structural information in addition to an aggregate (reduced
order) model of the rest of the systems, it is possible to obtain simpler
design schemes. However, no conclusive results are available at this time.

We have also investigated the application of lattice structures to the
adaptive control problem. Our work in this area seemed to have generated a
considerable amount of interest (cf. [R1]-[R6]). This class of algorithms is

especially well suited for large scale problems of the type considered in this
project.

In the next section we 1ist the publications prepared under this
contract. The key papers are enclosed in the appedices.
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ROBUST ADAPTIVE CONTROL: CONDITIONS FOR GLOBAL STABILITY
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ABSTRACT

An input-output approach is presented for analyzing the global stability
and robustness properties of adaptive controllers to ummodeled dynamics. The
concept of a tuned system is introduced, i.e., the control system that could
be obtained if the plant were known. Comparing the adaptive system with the
tuned system results in the development of a generic adaptive error system.
Passivity theory is used to derive conditions which guarantee global stability
of the error system assocfated with the adaptive controller, and ensure
boundedness of the adaptive gains. Specific bounds are presented for certain
significant signals in the control systems. Limitations of these global
results are discussed, particularly the requirement that a certain operator be

strictly positive real (SPR) -- a condition that is unlikely to hold due to
unmodeled dynamics.

This work was supported by the Afr Force Office of Scientific Research (AFSC),
under contract F4920-81-C-0051. The United States government {s authorized to

reproduce and distribute reprint for governmental purposes notwtthstanding any
copyright notation thereon.
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1. INTRODUCTION

1.1 Background

RN

The analysis and design of adaptive control systems has been the subject
of extensive research in the past two decades (1]-[10]. Adaptive techniques
provide a way of handling plant uncertainty by adjusting the controller
parameters on-line to optimize system performance. An alternative method for
handling uncertainty is to use a fixed structure controller designed to
provide acceptable performance for a specified range of plant behavior. In
principle, adaptive controllers can provide improved performance compared to
fixed robust controllers, since they are tuned to the uncertain plant.

2 However, adaptive controllers sometimes exhibit undesirable behavior during
the tuning or adaptation process. For example, unmodeled dynamics can cause a
rapid deterioration in performance and even instability [11],[12]. This

- problem is not resolved by increasing the order or complexity of the model.

pas Since the model of any dynamic system, by definfition, is not the actual
system, it can therefore be argued that unmodeled dynamics are always oresent,
Y ad infinitum.

The main reason for these difficulties with adaptive controllers seems to

o be that robustness to unmodeled dynamics was not considered as a design

< criterion in the development of the adaptive control algorithm. The design )
. objective is global stabilfty of the closed-loop system, e.g., (7], [9] and jgr
5 various assumptions on the structure of the plant are required to achieve that

objective. In particular, it {s necessary to assume that the plant is linear f?
and time invariant (LTI), that the relative degree of the transfer function f{s :
known as well as the sign of the high freauency gain. Such reauirements are
not practical since real plants are often nonlinear and time-varying and can ;}
- be accurately represented only by high order (sometimes infinite order [13])
- complicated models.

The need for robustness to plant uncertafnty is not unique to adaptive }q

) control. The problem of robustness is ubiquitous in control theory and has -
: been studied in the context of fixed (nonadaptive) control [14]-[17]. These e
studies rely on the input/output properties of systems, e.g., [18],[19]. The 0
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predominant reason to examine robustness issues in this way is that the
characteritics of unmodeled dynamics, such as uncertain model order, are
easily represented. Lyapunov theory, on the other hand, is not well suited
for this type of uncertainty. Typically, plant uncertainty is characterized
by assuming that the plant belongs to a well defined set. For example, a set
description of an uncertain LTI plant is to define a "ball" in the frequency
domain. The center of the ball is the nominal plant model, and the radius
defines the model error. This set model description is one type of a more
general set description, referred to as a conic-sector [15]. The uncertainty
in the plant induces an uncertainty in the input/outout map of the closed-loop
system which can, again be characterized by a conic sector. Performance
requirements for the control system can be translated into statements on the
conic sector which bounds the closed-1o00op systems, making it possible to check
whether a given design meets specifications, and providing guidelines for
robust controller design.

In this paper we use the input/output approach to analyze the global
stability and robustness properties of continuous-time adaptive controllers
with respect to unmodeled dynamics (although we consider only continuous-time
algorithms, the input-output formalism can be readily extended to the
discrete-time case). By global we mean that no specific magnitude constraint
(other than boundedness) fs placed on any of the external inputs or initial
conditons. We develop an adaptive error system of a general form, by
comparing the actual adaptive system with a tuned system, {.e., the control
system that could be obtained i{f the plant were known. This error system is
similar to the type used in [7],[8] where the tuned system error output is
zero, due to the assumption of perfect modeling. By relaxing this assumption
we show that the non-zero outputs of the error system are the fnputs to a
nonlinear feedback error system consisting of the adaptive algorithm and two
feedback (1interconnection) operators,denoted by "ev and sz .

An important consequence of this structure is that the existence of
solutions (e.g., tuned system performance) {s separated from the stabiity
analysis (e.g., stability of the nonlinear error system). In general, the
adaptation law fs passive; consequently, if Hey is strictly posftive real
(SPR), then application of passivity theory [19]-[21], provides global
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Lz-stability of the map from the tuned system output to the actual adaptive

system output, even though the adaptive parameters may grow beyond all
bounds. We provide other conditfons (e.g., .y stable) to insure the

L_ boundedness of the adaptive gains. Similar results are developed to
fnsure L_-stability of the error system by using an exponentially weighted

passivity theory [19]. These results are summarized in Theorems 1A and 1B.

As a by product of the input/output view we also obtain specific bounds
on the L2 and L norms of significant signals in the adaptive system. The
results are summarized in Corollary 1.

The results in Theorem 1 and Corollary 1 are not essentially new (see
e.g., [71,(8]), although they do provide some extentions to previous
results. The main contribution, however, is the fact that all the results can
be obtained from a generic error system and from the application of nonlinear
stablity theorems based on input-output properties. As a consequence of this
approach, it is to be expected that conditions for robustness will arise in a
natural way. Such robustness results are obtained, but unfortunately, they
have a limited practical use. The main limitation is that the global theory
(Theorem 1) requires that Hev e SPR , which in turn places an upper bound on
the size of the unmodeled dynamics in the plant. The details are contained in
Lemmas 4.1 and 5.2. This bound ts quite restrictive and is easily violated by
even the most benign model errors, thus, verifying the results obtained in
{111, [(12]. To over come this limitation, we construct an SPR compensator,
based on the scheme proposed in [22] in the context of robust (non-adaptive)
control. Although in the adaptive case the supporing arguments are heuristic,
an example simulation shows a positive result.

The input/output analysis presented here provides a generic framework
within which 1t {s possible to analyze the robustness of adaptive robust
controllers. We believe that this framework can be used to develop practical
adaptive control algorithms that can be more readily appiied to real systems,
than the class of algoritmms currently in use.

Since this paper merges fdeas from several areas, it {s necessary to
introduce A number of definitions and concepts.
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2. SOME PRELIMINARIES

3 2.1 Notation :.-
The input/output formulation of multivariable systems is the principal =
view taken throughout this paper and the notation and terminology used is o
standard (see e.q. (18],[19]). The input and output signals are assumed to be
imbedded in either the normed function space
n n g o,
L = {X : [0,.) + R l |'x|| < .} (2.12) ‘e
p P v
or its extention ~.
- &
n n
Loe * {x : [0,T] « R} ”"”Tp <o, T <a} (2.1b)
) The respective norms ||.||p and “'”Tp are defined as follows:
" - (2.2a) -
: lIxlly = 1im Ixily,
& g‘
- 8
- with Nt
) ! Pyey1/P -
([ Ix(e)|Pdt)*’'P | p ¢ [1,0) -
o
sup x(t)], p= = P
_ fo,T1] '~
! where |.| s the Euclidean norm on R", Hence, L;e ifs an inner product -
space, with fnner product <x,y>; of elements x, y ¢ "'Z'e defined by T
@y = [ x(t)'y(t)de (2.2)
0 ~.
and so ”"“Tz . (<x.x>T)1/2 « If T+« then Lg is an inner-product space -~
with inner product <x,y> = 11m<x.y>1. . f
Tom ‘
]
g
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' g 2.2 Stability

i Systems considered in this paper are described by {tnput/output equations
;E of the form y = Gu where G:Lme - L"e fs a causal map from u into y, also
denoted u » y . The system G is said to be Lo-stable (or simply stable) 1f G
maps u ¢ L™ into Ye L" and 1f there exists finite constants k and b such
that ||(;ur|Tp <k ||u||Tp +b, for all T > 0 and all "‘Lme . The smallest
k that can be found is referred to as the Lp-gain (or simply gain) of G,
denoted yp(G) .

.
» s

e s
N

Because we often encounter LTl systems it is convenient to introduce the
following notation. Let R(s) and Ro(s) denote the proper and strictly proper
- rational functions, respectively. Let S and So denote functions in R(s) and
= Ro(s) , respectively, whose poles all have negative real parts. Thus,

. S and S° are the stable, lumped, LTI systems. Denote multivariable systems
with transfer function matrices, by R(s)™™, s™™ , etc. For example,

TR T T
.. C ey
, e
r . N

Ge ng means that all elements of G belong to S, , and so on.

1If Ge¢ $™™ then the following Lp-ga1ns are obtained,

v (6) < v_(6) = ] Sla(t)lat (2.4)
® - 0
| Y,(6) = sup FT6(Ju)] (2.5)
weR

where G{A) denotes the maximum singular value of the matrix A, defined as the
L positive square root of the maximum eigenvalue of A*A, where * {s the
' conjugate transpose of A. In (2.4), (2.5) G {s the operator, G(jw) the
transfer function matrix, and G(t) is the impulse response matrix.

2.3 Passivity

The following definitions follow those in [19],[21]. Let
G:LTe - LTe and let y, p be constants with y > 0. Then, V ucg¢ L;e :

re 7

&1
"
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G fs passive if,

<u, 6 wyop (2.6)

G is input strictly passive {f,

&j <u, Gu >3 tutulg, (2.7a)
=

g 6 is output strictly passive if,

L

- <u, Gu>pop *uibuly, (2.7b)

(u and p are not the same throughout). When G ¢ s™M catisfies (2.7), G is
said to be strictly positive real (SPR), denoted G ¢ sPR™ . Because SPR
systems play a crucial role in the proof of stability of adaptive systems, we
introduce the following subsets:

PR} = {6 ¢ S""“"Iu% [6(Jw) + 6(-3u)'] - uI) > 0, VueR} (2.8a)
SPR = (6 ¢ SpIa(F (6(du) + Gl-Ju)'] - u G(-Ju)'G(Jw)) > O, VueR} (2.8b)

where A(A) denotes the smallest eigenvalue of A. Thus, whenever G ¢ S™ " ,
conditions (2.7) can be tested in the frequency domain. Moreover, SPR: and
spgf , respectively, separate the strictly proper SPR functions from the
proper, but not strictly proper, SPR functions. In the scalar case, the
frequency domain cond{tions simplify because A[(G(Juw) + G(-ju)'l= —
2 Re(G(Jw)]. 3

Certain unstable systems in R(s)™™ can be passive by virtue of (2.6). f%
In particular, GeR(s)™™ 15 passive {f G(s) is positive real. The transfer -
functfon matrix G(s) is positive real 1f: (i) it has no poles in Re(s) > O, 3
(11) poles on the ju axis are simple with a non-negative residue, and ({i{) =
for any w ¢ R not a pole of G(Jju) + G(-Jw)' > . s




n 2.4 Model Error

The cornerstone of robust control design is a quantifiable bound on the
LY error between the model used for control design and the actual plant to be
controlled. In the adaptive control case considered here the model is a

. F? parametric model, where the parameters are not known exactly. The structure
of the parametric model can be obtained analytically from physical laws, but
this tnvariably results in a complicated model. Often a simple structure {is
selected because it is more convenient for analysis and synthesis.

: :i Let P denote the plant to be controlled. In the broadest sense P {s a

N relation in L'“e X L?e , f.e., the set of all possible ordered pairs
E; (u,y)eLTe x Ly, Of fnouts u e LTe and outputs ygL?e that could be generated
by the plant [18]. The uncertainty in the plant {s denoted by (u,y) ¢ P .
E - Let PG:L:'e - L:e denote a parametric model of the plant P with
T - parameters 4 ¢ Rk . The parameters can be selected so as to minimize any
ll discrepancies between the model and the plant, {.e.,
infkly-PauITp = |y-P*ulTp (2.9)
aelR
=
N We will refer to q*ng as the tuned model parameters and to P = P _ as the
Qw
. tuned parametric model of the plant. In general, P, {s dependent on the
L input/output sequence.
ad
: Most of the previous work on adaptive control deals with the case where
for every (u,y) ¢ P there exists a tuned parametric model P«, such that
- P,=P. In this paper we consider the presence of urmodeled dynamics, thus,
- the uncertain plant P cannot be perfectly modeled by any parametric model
_ P_ . Since we will deal exclusively with LTI plants P ¢ R(s)™™ , it fs
~2 convenient to describe this model error in the frequency-domafn. Let
- Bs(r) denote a "ball” in S of radius r, defined by
l: nxm
; B5(r) = (G e S™"| 3[G(Ju)] < u), w ¢ R} (2.10)
‘ L'.
r 9
s
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Let the plant to be controlled be described by

P = (1+a)P, (2.11a)

where P ¢ R(s)"xm is the plant, P, ¢ R(s)"xm is the tuned parametric model,
and 5 ¢ S™" denotes the unmodeled dynamics. Further, the only knowledge
available about a is that it is bounded such that

Ae Bs(&) (2.11b)

where §(w) is known for all frequencies. In other words, while the operator
a is not precisely known, we do know a bound on its effect. This model
description (2.2) is used throughout the paper to precisely define the plant
to be controlled in an adaptive system. Following Doyle and Stein [16] we
will refer to (2.11b) as an unstructred uncertainty. Note that although a fis
stable, P and P« need not be stable. Hence, the parametric model {s
implicitly required to capture all unstable poles of the plant. Although this
is not severly restrictive - at least on practical grounds - nonetheless, it
can be eliminated by definng model error as (stable) deviations in (stable)
coprime factors of the plant [23]; As the subsequent analysis is not
substantially effected by this choice, we will remafn with (2.11) for purposes
of illustration.

2.5 Persistent Excitation

From (31], a regulated function F(.) = R, » R™" fs persistently
exciting, denoted F ¢ PE , if there exists finite positive constants

ays ags and ag such that
S"Gg
' .
In > s[ F(t)F(t)'dt > a ln . ¥se R* (2.12)

®2 1

The usefulness of a persistently exciting signal is in establishing the
exponential stability of the following differential equation which arises in
many adaptive and identification schemes, {.e., -@
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X = -BFHF'x + w , x(0) ¢ R" (2.13)

It is shown in [31] that 1f B¢ R™™, B =8'>0, H¢ spR: or sPR}, and
FecPE, then (w, x(0) |- x {s exponentially stable, i.e., 3 m, 1 > 0 such

that

t
Ix(e)] < me>t (x(0)] + [ me™ %" fuie)lde - (2.14)

0
We will utilize this latter result in section IV in our proof of stablity of

the adaptive system.

BC A




3. ADAPTIVE ERROR MODEL
In this section we develop a generic adaptive error model which will be
used in the subsequent analysis. This requires defining the notions of robust
control and tuned control.

Robust and Tuned Control

Consider, for example, the model reference adaptive control (MRAC)
depicted in Figure 3.1, consisting of the uncertain plant P, a reference model
H., and an adaptive controller C(a) , where 3 is the adaptive gain vector, r
is a reference input, d is a disturbance process, and n is sensor noise.
Denote by H(a) the closed-loop system relating the external inputs w = (r',
d', n')' to the output error e, as depicted in Figure 3.2.. Also, let we W
denote the admissable class of input signals.

The objective of the adaptive controller is twofold: (1) adjust & to a
constant g, ¢ RK such that H(e,) has desireable properties; and (2) during
adaptation, as g is adjusted, the error is 